Soil Cation Exchange Capacity Estimator (CEC-App)

Description

The algorithms of software for estimating the CEC is based on the equations shown below. the program has been written in Delphi Programming language. The parameters are given in an Ms-Excel format file to CEC-App. The result can also be demonstrated in Ms-Excel format. The software has the ability to demonstrate regression equation between the influencing factors and the CEC derived by each equation. The software has been designed quite user friendly and conducts the user correctly through the calculations step by step and don't allow the user to make a mistake. It is compatible with 32 and 64-bit windows operating system types.

The table of equations and screenshots of the software calculations has been shown below:

Input Parameters	Output					
OC (%)						
OM (%)						
Clay (%)	CEC (amala/ka)					
Silt (%)	CEC (chloic/kg)					
Sand (%)						
pH (in water)						

References	Equations
	$CEC = \sqrt{Clay + Silt - OC^{3} + 1.58532Clay.OC^{2}} + Ln[pH^{2}(Silt - OC)] + 0.821\sqrt[3]{pH}$
Shiri et al. (2017)	$+\left[\left(\frac{OC+pH}{Silt-2.5726}\right)^{6}+OC\right]^{3}$
Shiri et al. (2017)	$CEC = \log[2Clay - 13.969] + \sqrt{Clay - \sqrt{sand} + 2OC + 6.192} + Clay + 10.30$
Fooladmand (2008)	CEC = 8.501 + (0.078 * Clay) - (0.073 * Sand) + (1.693 * OM)
Mirkhani et al. (2005)	$CEC = (-0.01) + ((0.233)^{*}(Clay)) + ((0.00187)^{*}(Silt)^{2})) + ((7.69)^{*}(OC)^{0.5}))$
Ersahin et al. (2006)	CEC = 4.97 + (0.53 * Clay)
Ersahin et al. (2006)	CEC = 36.47 - (0.44 * Sand)
Ersahin et al. (2006)	CEC = 54.62 - (0.76 * Silt)
Olorunfemi et al. (2016)	CEC = (-13.93) + (2.645 * pH) + (0.0446 * Clay) + (2.267 * OM)
Bell and van Keulen (1995)	CEC = (2.24) + (0.774 * Clay) + (0.0807 * OM)
Bell and van Keulen (1995)	CEC = (5.79) + (0.100 * Clay * pH)

Bell and van Keulen (1995)	CEC = (-10.0) + (0.163 * OM * pH) - (0.0209 * OM * Clay) + (0.131 * Clay * pH)
Bell and van Keulen (1995)	CEC = (42.8) - (5.36 * pH) + (0.297 * OM) - (2.04 * Clay) + (0.363 * Clay* pH)
Breeuwsma et al. (1986)	CEC = (2.5 * OM) + (0.5 * Clay)
Breeuwsma et al. (1986)	CEC = (1.5 * OM) + (0.5 * Clay)

1		Sample ID	Clay (%)	Sitt (2)	Sand (Z)	OC (%)	OM (X)	pH [extract]	Measured CE	CEC: Shiri et al. (2017) [1]	CEC: Shiri et al. (2017) [2]	CEC: Fooladmand (2008)	CEC: Bell and van Keulen (1995) [1	CEC: Bell and v
Load from Excel		1	36	26	38	0.876	1.511298	7.84	24.912	19.893	54.210	11.094	30.226	27.768
		2	44	22	34	0.894	1.541256	8	22.365	20.578	62.963	12.060	36.420	36.704
		3	42	30	28	0.76	1.31024	8.03	21.6861	20.104	60.810	11.951	34.854	34.746
		4	27	20	53	0.79	1.36196	7.85	20.682	17.775	44.146	9.044	23.248	18.740
 ✓ Shiri et al. (2017) [1] ✓ Shiri et al. (2017) [2] 		5	26	23	51	0.81	1.39644	7.88	20.003	18.084	43.044	9.170	22.477	17.874
		6	40	30	30	0.78	1.34472	8.04	21.546	20.051	58.622	11.708	33.309	32.768
Fooladmand (2008)		7	26	44	30	1.248	2.151552	8.1	26.026	23.021	43.285	11.982	22.538	19.260
Mirkhani et al. (2005)		8	46	32	22	0.579	0.998196	7.96	24.585	19.531	65.168	12.173	37.925	38.302
Frsahin et al. (2006) [1]		9	46	28	26	0.245	0.42238	8.12	17.756	18.018	65.090	10.906	37.878	39.084
Ersahin et al. (2006) [2]		10	42	26	32	0.388	0.668912	8.17	17.256	17.975	60.726	10.573	34.802	35.255
j Ersanin et al (2006) [5]														
i bei an van kolm (1335)(e) Breeuwen al (1396)[] ☐ Breeuwen al (1396)[2]	Calculate >> Graph Export to Excel													
	Edi													

References

1 - Shiri, J., Keshavarzi, A., Kisi, O., Iturraran-Viveros, U., Bagherzadeh, A., Mousavi, R., Karimi, S. 2017. Modeling soil cation exchange capacity using soil parameters: Assessing the heuristic models. Computers and Electronics in Agriculture, 135: 242-251.

2- Fooladmand, H.R. 2008. Estimating cation exchange capacity using soil textural data and soil organic matter content: A case study for the south of Iran. Archives of Agronomy and Soil Science, 54(4): 381-386.

3- Mirkhani, R., Shabanpour, M., Saadat, S. 2005. Using particle-size distribution and organic carbon percentage to predict the cation exchange capacity of soils of Lorestan province. Iranian Journal of Soil and Water Sciences, 19(2): 235-242.

4- Ersahin, S., Gunal, H., Kutlu, T., Yetgin, B., Coban, S. 2006. Estimating specific surface area and cation exchange capacity in soils using fractal dimension of particle-size distribution. Geoderma, 136: 588-597.

5- Olorunfemi, I., Fasinmirin, J., Ojo, A. 2016. Modeling cation exchange capacity and soil water holding capacity from basic soil properties. Eurasian Journal of Soil Science, 5(4): 255-331.

6- Bell, MA., van Keulen, H. 1995. Soil pedotransfer functions for four Mexican soils. Soil Science Society of America Journal, 59(3): 865-871.

7- Breeuwsma, A., Wosten, J.H.M., Vleeshouwer, J.J., van Slobbe, A.M., Bouma, J. 1986. Derivation of land qualities to assess environmental problems from soil surveys. Soil Science Society of America Journal, 50: 186-190.